Hydrology delivering Earth System Science to Society, 28 Feb. - 2 March 2007, Tsukuba, Japan

Experimental approaches to explore surface water / groundwater interactions at the hillslope and small catchment scale

Stefan Uhlenbrook

UNESCO-IHE Institute of Water Education, Delft, The Netherlands

Understanding Hydrological Processes Flood events in the Haldenbächle, Black Forest Mountains,

Typical questions from experimentalists: ... how does the water enters into a stream? ... what are the dominating processes? ... what are the residence times of the water?

25

20

15

5

0 ⊢ 24.Okt 1 But.

Abfluß [l/s]

"How can we whittle down process complexity at headwater scale to process simplicity at catchment scale?" (Sivapalan 2003, HPToday)

(1) Multi-technical experiments at hillslope scale

(2) Scale influence on runoff generation and runoff components

(3) Surface water-groundwater interactions in a semi-arid environment

South Pare Mountains, Tanzania

Black Forest

Mountains,

Dreisam Catchment

south-west Germany (Southern Black Forest Mountains) 258 km² (Brugga: 40 km²) 309 1472 m a.s.l. P: 1500 mm/a R: 900 mm/a E: 600 mm/a

Geology

- metamorphic rocks
- drift cover (0 10 m)

Land use

- settlement 3 %
- forest 61 %
- pasture 31 %
- agriculture 5 %

Sub-Catchment Brugga (40 km²) Three main flow systems with different residence times and contributions on a seasonal time scale

groundwater t₀ = 7.1 years	~ 20 %	ο

 t_0 = mean residence time

(Uhlenbrook et al. 2002, Wat. Resour. Res.)

Test Sites

Spring A (Zipfeldobel)

Spring B (Zängerlehof II)

Investigation Period

(Uhlenbrook et al., HSJ, in review)

Hydrochemical Dynamics: Dissolved Silica

End-Members for Hydrograph Separation

Spring A: 2 components

direct Runoff:	0.3 mg/l Silica	
deep & shallow GW:	pre-event conc.	

Hydrograph Separation

ERT Along Transects

Spring A

(Uhlenbrook et al., HSJ, in review)

ERT results of <u>spring A</u>

Results of ERT Measurements

(Uhlenbrook et al., HSJ, in review)

Concluding Remarks (1) Investigations of Hillslope Processes

(1)Classical hydrometric measurements in combination with tracers and ERT proofed useful to identify runoff components at the hillslope scale

Spring A: damped (hydrology, hydrochemistry), 2 runoff components

Spring B: very responsive, 3 runoff components, importance of shallow groundwater (further uphill!)

(2)Significant difference of hillslope processes appears to be controlled by variable soil and drift structure and less by land use (topography?)

alk => 3 Topics

periments at

2) Scale influence on runoff generation and runoff components

(3) Surface water-groundwater interactions in a semi-arid environment

South Pare Mountains, Tanzania

Black Forest

Mountains,

Scale Influence on Runoff Components 1) Base Flow Investigations: Synoptic Sampling

(Didszun and Uhlenbrook, WRR, in review)

Synoptic Sampling

- only weak/moderate correlations (rank r: 0.04 0.7) between catchment properties (area, geology) and hydro-chemical parameters
- 2) moderate correlations between land use and hydrochemical parameters (rank r: 0.5 – 0.7)

258 km²

Scale Influence on Runoff Components 2) Event-based Investigations

Scale dependence of runoff components during events?

- 3 catchments: 1.5 ha; 1.14 km²; 40 km²
- Event: September 2001

Scale dependence of runoff components?

- 3 catchments: 1.5 ha; 1.14 km²; 40 km²
- Event: September 2001

Hydro-chemical responses at different scales

(Didszun and Uhlenbrook, 2006, *Wat. Res. Research*, in review)

Summary of Experimental Investigations Scale Dependence of Runoff Components

Concluding Remarks (2) Scale Dependence of Runoff Components

- 1) Large variability of chem. concentrations at hillslope and headwater scale 'converged' at catchment scale
- Only weak/moderate correlations between hydro-chemical concentrations and catchment properties
- No classical scale-dependence, but the hydro-chemical response looks different as soon as the catchment is 'complete':
 - \Rightarrow Headwater (< 1-2km²) is typical dominated by the hillslope reaction
 - ⇒ Catchments > 1-2 km² are different, influences of riparian zone / saturated areas are observable
 - \Rightarrow Differences to catchments < 40 km² are relatively small
 - ⇒ Larger catchments > 40 km² behave different (urban areas, groundwater etc.)

Application of the TAC^D model

Concluding Remarks (3) Use of tracer data to proof model concepts

- 1) Tracer simulation without additional calibration or additional model parameters (e.g. silica simulations)
 - 'accounting' model for ¹⁸O directly coupled to the water balance model for every cell/layer (no further parameters introduced)
- 2) Independent data set ('orthogonal data')

3) Learned lessons about the source areas of surface runoff

Black Forest Mountains, generation

3) Surface water–groundwater interactions in a semi-arid environment

South Pare Mountains, Tanzania

Study area

Pangani river basin Tanzania Legend Mt. Kilimanjaro Power Station Mt. Meru Tanzania Border Lake Chala Pangani Catchment Water River Elevation [m] Lake Jip e 0 - 499 500 -999 North Pare Mts. 1000 -1499 1500 - 1999 2000 - 2499 Nyumba ya Mungu 2500 - 2999 3000 - 3499 bake Amb ussel 3500 - 3999 4000 - 4499 South Pare Mts. 4500 - 4999 5000 - 5499 5500 - 5895 SIGNGGRE MOUTHIN Usambara Mts. 1122 Bandala Hills Vdotwa nire NTNU Hale **New Pangani Falls** 50 Kilom eters På1T.970927 GI palt@nvg.ntnu.no

- Catchment area 300 km²
- Semi-arid
- Precip.: 550-800 mm/a
- Pot. evaporation 2000 mm/a
- Two rain seasons
- Elevation: 700-2000 m

(Pictures: H.H.G. Savenije; M. Mul, March 2006)

Investigation of flood events: Chemical Hydrograph Separations

- Storm sampling at 3 locations
- Data collected
 - ⇒EC, major anions and cations and dissolved silica
 - ⇒ Discharge measurements only at one weir
- Two storms investigated
- Hydrograph separation:
 - $C_{t}Q_{t} = C_{g}Q_{g} + C_{s}Q_{s}$ $Q_{t} = Q_{g} + Q_{s}$ $\frac{Q_{s}}{Q_{g}} = \frac{C_{g} C_{t}}{C_{t} C_{s}}$

Rainfall-Runoff Investigations: Separation in surface runoff / sub-surface runoff using EC

First storm

- \Rightarrow >80% baseflow
- \Rightarrow Also negative baseflow

- Second storm
 - \Rightarrow >92% baseflow
 - \Rightarrow Also negative baseflow

Uncertain, due to non-conservative behavior of EC!

Rainfall-Runoff Investigations Separation in surface runoff / sub-surface runoff using dissolved silica (Si)

Electrical Resistivity Tomography (ERT) Investigations

Electrical Resistivity Tomography (ERT) Investigations

Last electrode is located at 207.5 m.

Synthesis Groundwater Flow Systems in the Makanya Catchment

Concluding Remarks (4) Surface water-groundwater interactions in semiarid environment

- (1) Importance of subsurface water for formation of small floods
- (2) Groundwater discharge into neighboring catchment (controlled by geology)
- (3) Basis for

development of conceptual catchment model

design of next field studies

What did we learn?

"... all nice, but we need measurements and predictions at catchment scale!"

(Keith J. Beven)

(Picture: Jan Hopmans, USA)

LETTERS

NATURE Vol 445 |1 February 2007

NEWS & VIEWS

liquid phase, further depleting the remain-

ing cloud water vapour (blue curves in Fig. 1)

and removing the heavier isotopes from the atmosphere. When the remaining dry and

depleted air is mixed with freshly evaporated

Importa convecti

John Worden¹, Da contributors*

Atmospheric moistur climate system, yet th ity are poorly under rain contributes sign clouds5, but few obs Similarly, the relative land from local evapo uncertain3,7. Lighter orate whereas heavier isotopic composition information combine composition of tropo Emission Spectromet investigate aspects of not well constrained spheric vapour conte position of water vap evaporation contribu ity, with typically 209 convective clouds. O nature of tropospher of precipitation8,10,13, both oceanic source moisture sources. Or intensity of the preser future changes as the

HYDROLOGY

Tropical rain recycling

Thom Rahn

The behaviour hydrological cy data provides

Water is arguably It moves through I beginning with its into the atmosph and droplets coal precipitation goes while some enters rain or snow. Terr or is stored in glac carried by rivers b

Challenge of further up-scaling isotope methods!

Out-scaling tracer techniques to tropical areas!

Responses to Taikan's Questions

- 1. "To review the state-of-the art modeling systems on large and global scale ..."
 - Not done.

But, not only a question of computer power (Taikan: in 2020 we will model in high resolution, 0.01 km² and hourly). Different processes dominate at different scales

- 2. "To identify the gap between expectation from society and our ability to model ..."
 - Reliable predictions under change circumstances
 - Beautiful (global) maps and nice fits of hydrographs do not guarantee sound process based predictions (focus on assumptions etc.)
- 3. "To build a strategy for advancing current modeling systems"
 - Link of process researchers and global modelers

Rainfall-Runoff Investigations Contributions from 2 Sub-catchments using EC

First storm
⇒Vudee 13.5mm
⇒Ndolwa 7.9mm

Second storm
⇒Vudee 7mm
⇒Ndolwa 17.6mm

Hydrochemical Dynamics: Deuterium

Model simulation results using a calibrated model

Nash and Sutcliffe Efficieny > 0.8 on a hourly base

(Uhlenbrook and Leibundgut 1999, IAHS Pub.)

But, most of the catchments world-wide are ungauged or poorly gauged! (Example: Modi Khola catchment , Nepal)

(Konz et al. 2006)

Searching for water level data in southern Zimbabwe

(Pictures: H.H.G. Savenije; M. Mul, March 2006)

PUB Approach in a Nutshell (Sivapalan et al. 2003, *HSJ*)

Variation of Water Quality of Springs During Base Flow Sampling

Rainfall-Runoff Investigations

First storm

\Rightarrow 13.5mm and 7.9mm rainfall

Second storm

\Rightarrow 7mm and 17.6mm rainfall

Hydrograph 4-5 Dec

 \Rightarrow Two peaks

- \Rightarrow From different storages?
- ⇒ From different subcatchments?

⇒ One peak ⇒ Also with a 'pre-peak' of EC

Hydrograph separation

Table 1 Background concentrations observed during base flow [mg/l]

	upper-Vudee	Ndolwa	Weir
EC [µS/cm]	315	659	380
Ca ²⁺	28	41	29
Mg ²⁺	16	44	20
Na⁺	29	49	33
K+	1.4	2.3	1.8
HCO ₃ -	174	316	195
SO ₄ ²⁻	30.18	79.92	38.46
Dissolved silica	38	38	37.5
CI	39.21	53.4	41.53
F-	1.36	1.43	1.08

Hydrograph Separation Using Other Tracers: Mg²⁺, Na⁺ and SO₄²⁻ Contribution of Sub-catchment Ndolwa

Hydrograph separation

Table 1 Background concentrations observed during base flow [mg/l]

	upper-Vudee	Ndolwa	Weir
EC [µS/cm]	315	659	380
Ca ²⁺	28	41	29
Mg ²⁺	16	44	20
Na⁺	29	49	33
K+	1.4	2.3	1.8
HCO ₃ -	174	316	195
SO ₄ ²⁻	30.18	79.92	38.46
Dissolved silica (Si)	38	38	37.5
Cl-	39.21	53.4	41.53
F-	1.36	1.43	1.08